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Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. e main etiological agents of
cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences
in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters.
Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has
spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major
molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII,
and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the
two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of
identi�cation, species, andmolecular type. A detailed analysis of the geographical distribution of the major molecular types in each
continent has been described and represented on thematic maps. is study represents a useful tool to start new epidemiological
surveys on the basis of the present knowledge.

1. Introduction

According to the last report (December 2010) from the Joint
UnitedNations ProgramonHIV/AIDS and theWorldHealth
Organization (http://www.unaids.org/), 34 million people
worldwide suffer from HIV infection/AIDS, 2.7 million
people are newly infected every year from this disease, and 1.8
million people die from AIDS-related causes. Neuropatho-
logical conditions are present in approximately 70% to 90%
of AIDS patients [1]. Cryptococcal meningitis is considered
anAIDS-de�ning condition [2–4], and it is themost common
fungal infection of the central nervous system and the third
most frequent neurological complication in AIDS patients
[1]. e main etiological agents of cryptococcosis are the
basidiomycetous yeasts Cryptococcus neoformans and Cryp-
tococcus gattii which can also infect, although with a signi�-
cantly lower incidence, people with decreased immunity such
as individuals with sarcoidosis, lymphoproliferative disor-
ders, those undergoing immunosuppressive therapies [4–6],
andmore rarely immunocompetent people [7, 8].Worldwide,

C. neoformans and C. gattii infections cause an estimated
one million cases of cryptococcal meningitis per year among
people with HIV/AIDS, resulting in nearly 625,000 deaths
(Centers for Disease Control and Prevention, CDC, Atlanta,
USA, http://www.cdc.gov/). e greatest burden of disease
occurs in sub-Saharan Africa, where mortality is estimated
to be 50% to 70% [9, 10]. In the United States and other
developed countries, cryptococcosis is decreasing among
persons with HIV/AIDS due to the availability of high active
antiretroviral therapy, and, at present, the mortality is around
12% (CDC, Atlanta, USA).

Although in the past the etiological agent of cryptococ-
cosis was considered a homogeneous anamorphic species (C.
neoformans), now the two species C. neoformans and C. gattii
have been separated on the basis of numerous differences
such as geographical distribution, ecological niches, epidemi-
ology, pathobiology, clinical presentation, and molecular
characters. C. neoformans species is further classi�ed in two
varieties, C. neoformans var. grubii (serotype A) and C.
neoformans var. neoformans (serotype D), which are also
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F 1: Percentage of Cryptococcus neoformans and Cryptococcus gattii isolates from clinical (𝑛𝑛 𝑛 𝑛,594) and environmental (𝑛𝑛 𝑛 𝑛𝑛𝑛)
sources (a). Distribution of Cryptococcus neoformans and Cryptococcus gattii isolates in the different countries of Oceania (b). Map of the
geographical distribution of the Cryptococcus neoformans and Cryptococcus gattii isolates in Oceania (c). Clinical isolates were reported from
red-colored countries, whereas both clinical and environmental isolates were reported from orange-colored countries.

able to recombine and to produce diploid or aneuploid
intervarietal AD hybrids [78, 131, 132]. C. neoformans has
been widely associated to avian excreta [44, 97, 98, 133–
136] although it has been isolated also from other sources
[11, 28, 60, 99, 100, 137].

C. gattii species is classi�ed in two different serotypes,
B and C, which have not yet elevated to the variety status.
is species was thought to be restricted to tropical and
subtropical regions but a recent outbreak due to C. gattii
infection, which occurred in Vancouver Island and North
�est Paci�c Coast of America [121, 138], has expanded the
geographical area of this pathogen also to temperate regions.
In addition, interspecies hybrids between C. neoformans and
C. gattii have been found in Colombia, Brazil, India, ande
Netherlands [29, 122, 139, 140].

Besides a prevalent asexual life cycle, both species have
also a bipolar sexual cycle with two mating types, MATa and

MAT𝛼𝛼, the latter being the most prevalently isolated from
both patients and environment. Filobasidiella neoformans
and Filobasidiella bacillispora are the sexual states of C.
neoformans and C. gattii, respectively [141, 142]. During
sexual recombination, either �laments with clamp connec-
tions and basidiospores are produced [143]. Recombinant
basidiospores are also produced via same-sex mating [144]
and are thought to be the propagules responsible for the
infection of the host [143].

e availability of whole genome sequences from C. neo-
formans and C. gattii strains and the recent progresses in the
molecular biology have greatly advanced our understanding
of this pathogenic yeast [145, 146]. e disease aspects of
cryptococcal infection are becoming better de�ned, while
the life cycle of this fungus in the environment remains less
well established. How this fungus has spread worldwide, the
nature of its population structure, and how it evolved to be a
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F 2: Percentage of Cryptococcus neoformans and Cryptococcus gattii isolates (𝑛𝑛 𝑛 𝑛,518) identi�ed at species complex, species,
variety/serotype, ormolecular type level (a). Prevalence of the different �N and�Gmolecular types among the isolates identi�ed atmolecular
type level (𝑛𝑛 𝑛 𝑛𝑛𝑛) (b). Geographic distribution of the molecular types identi�ed in �ceania (c). Molecular typing data have been combined
from the following references: Australia [11–27], New Zealand [13, 15], and Papua New Guinea [13–15, 23, 25].

deadly pathogen are ongoing research subjects that are key to
our understanding of this environmental pathogen.

Due to the importance of the C. neoformans/C. gattii
species complex as human fungal pathogens, several research
groups are currently focusing on the molecular determina-
tion of the number of genetically diverged subgroups within
each species. Several molecular typing techniques have
been applied: multilocus enzyme electrophoresis (MLEE)
[147]; DNA �ngerprinting [148]; random ampli�cation of
polymorphic DNA (RAPD) [12, 149]; P�R �ngerprinting
[150]; ampli�ed fragment length polymorphism (AFLP) [11];
restriction fragment length polymorphism (RFLP) of PLB1
[13], GEF1 [37], or URA5 genes [64]; sequencing of ITS1-
5.8S-ITS2 rDNAregion [38] or intergenic spacer region (IGS)
[151] and,more recently,multilocus sequence typing (MLST)
[14, 45, 53]; multilocus microsatellite typing (MLMT) [89,
140]; matrix-assisted laser desorption ionization-time of
�ightmass spectrometry-basedmethod (MALDI-T�F) anal-
ysis [79, 152, 153].

e multitude of data obtained with different typing
methods has raised the problem to compare the results
and the need to standardize genotypes nomenclature among
comparable methods. e �rst steps towards this direction
have been recently achieved by the comparison of the results
obtained using the most common Cryptococcus typing meth-
ods [15] and by the identi�cation of eight major molecular
types among the two Cryptococcus species. A second step
was to standardize a gold standard typing method able to
produce unambiguous and comparable results [154]. Finally,
a global database was implemented in order to collect the
different genotypic pro�le and to make the data available
for the research community [154]. is task is the main
aim of the activity of the ISHAM Cryptococcus working
Group for “Genotyping of Cryptococcus neoformans and
Cryptococcus gattii” which promotes the genotyping of the
twoCryptococcus species to elucidate the global epidemiology
of this life-threatening pathogen.



4 �cienti�ca

Environmental isolates

6%

Clinical isolates

94%

(a)

China

50%

Other countries

1%

Indonesia

1%

Iran

1% Republic of Korea
1%

Malaysia1%
Japan

3%

Cambodia
3%

Vietnam
4%

Taiwan

5%

Thailand

10%

India

20%

(b)

Oman

Kuwait

Qatar

Israel

Turkey

Iran

Pakistan

India

Nepal

China

Bangladesh

Japan
Republic of

Korea

Thailand

Malaysia

Indonesia

Taiwan

Philippines

Singapore

Cambodia
Vietnam

Saudi Arabia

(c)

F 3: Percentage of Cryptococcus neoformans and Cryptococcus gattii isolates from clinical (𝑛𝑛 𝑛 𝑛𝑛,412) and environmental (𝑛𝑛 𝑛 𝑛,239)
sources (a). Distribution of Cryptococcus neoformans and Cryptococcus gattii isolates in the different Asian countries (b). Map of the
geographical distribution of the Cryptococcus neoformans and Cryptococcus gattii isolates in Asia (c). Clinical isolates were reported from
red-colored countries, whereas both clinical and environmental isolates were reported from orange-colored countries.

2. Standardization ofCryptococcusMolecular
TypingMethods

Although numerous molecular techniques have been applied
to subtype C. neoformans and C. gattii strains, only three
methods were proved to produce comparable results: PCR
�ngerprinting, AF�P, and M��T.

PCR �ngerprinting is based on the ampli�cation of DNA
sequences �an�ed by simple DNA repeats which are used
as single primers in the PCR. e ampli�cation produces a
banding pro�le that discriminates the strains at subspecies
level. e primers employed in PCR �ngerprinting include
the minisatellite-speci�c core sequence of wild-type phage

M13 (5′-GAGGGTGGCGGTTCT-3′) and themicrosatellite-
speci�c primer (GACA)4. e technique was �rst applied
to Cryptococcus typing in 1993 [150] to study a set of
cryptococcal strains. A high polymorphism was detected
among the investigated strains which could be separated in
two groups corresponding to serotype A and serotype D and
a third one including both serotypes B and C. In a different
study, a variety of genotyping clusters was identi�ed during
the investigation of some Italian C. neoformans isolates by
(GACA)4 PCR �ngerprinting [155]. e results showed a
strong correlation between genotypes and serotypes. e
more prevalent genotype was named VN1 and corresponded
to C. neoformans var. neoformans, serotype D, a second
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F 4: Percentage of Cryptococcus neoformans and Cryptococcus gattii isolates (𝑛𝑛 𝑛 𝑛𝑛,651) identi�ed at species comple�, species,
variety�serotype, ormolecular type level (a). Prevalence of the different VN andVGmolecular types among the isolates identi�ed atmolecular
type level (𝑛𝑛 𝑛 𝑛,708) (b). Geographic distribution of the molecular types identi�ed in Asia (c). Molecular typing data have been combined
from the following references: India [11, 14, 15, 28–36], China [8, 37–43], ailand [11, 15, 44–48], Malaysia [49, 50], Vietnam [51], Taiwan
[38, 52], Japan [38, 53, 54], Republic of Korea [55], and Israel [56].

genotype was identi�ed as VN6 and corresponding to C.
neoformans var. grubii, serotypeA, and further two genotypes
(VN3 and VN4) included isolates with a banding pattern
intermediate between VN1 and VN6 suggesting that these
strains were AD hybrids. erefore, this study provided, for
the �rst time, a tool to identify unambiguously intervarietal
AD hybrids. In a �rst attempt to standardize the techni�ue,
PCR �ngerprinting, using either M13 (GACA)4 primer, and
RAPD were applied to genotype 356 C. neoformans global
isolates [15]. Both typing methods were able to identify four
differentmolecular types: VNI andVNII corresponding toC.
neoformans var. grubii, serotype A, VNIV corresponded to C.
neoformans var. neoformans, serotypeD, andVNIII including

all AD hybrids. Later, a collaborative network between
Spanish and LatinAmerican researchers was established [64],
and the 340 isolates collected were investigated by M13 PCR
�ngerprinting and URA5 RFLP. e results showed, for the
�rst time, the distribution of eight molecular types in the
studied countries.emolecular typesVNI,VNII, VNIII and
VNIV were recognized among the C. neoformans isolates, as
previously reported, and further four molecular types, VGI,
VGII, VGIII, and VGIV, were found among C. gattii isolates.
PCR �ngerprinting was then applied in several studies, and,
at present, thousands of strains from different countries of
the world have been characterized using this typing method
[14, 30, 37, 39, 56, 78, 80, 93, 97, 101, 120, 156–164].
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F 5: Percentage of Cryptococcus neoformans and Cryptococcus gattii isolates from clinical (𝑛𝑛 𝑛 𝑛𝑛,436) and environmental (𝑛𝑛 𝑛 𝑛𝑛𝑛)
sources (a). Distribution of Cryptococcus neoformans and Cryptococcus gattii isolates in the different African countries (b). Map of the
geographical distribution of the Cryptococcus neoformans and Cryptococcus gattii isolates in Africa (c). Clinical isolates were reported from
red-colored countries, whereas both clinical and environmental isolates were reported from orange-colored countries.

e AFLP typing method is based on digestion of DNA
samples with a frequent and a rare cutting endonuclease
enzyme combined with ampli�cation using an adaptor that
creates speci�city at the restriction sites. Subsequent rounds
of PCR are able to select a unique pro�le depending on the
number of nucleotides added to the primers. Fluorescently
labeled fragments are separated by an automated capillary
sequencer and visualized as a virtual banding pro�le [165].
Application of this technique to Cryptococcus typing requires
a digestion with MseI and EcoRI restriction enzymes and
an ampli�cation with the two selective primers MseI-G and
EcoRI-AC [11]. e analysis of 207 global C. neoformans and
C. gattii isolates led to identify threeAFLP genotypes (AFLP1,

APLP2, and AFLP 3) among C. neoformans strains and three
(AFLP4, AFLP5, and AFLP6) among C. gattii. In addition,
two further subtypes of the genotype AFLP1 were identi�ed
as AFLP1A and AFLB1B [11]. Since AFLP is a technique
with a high discriminatory power, being able to assign a
unique pro�le to each strain, it contributed to elucidate the
cause of the outbreak of C. gattii in Vancouver Island [157].
In the study, two AFLP6 subtypes were clearly identi�ed
as the cause of the outbreak: AFLP6A and AFLP6B. Since
AFLP6Awas isolated in 75% of the cases in Vancouver Island
environment and AFLP6B isolates were less frequent, it was
hypothesized that the former genotype was more virulent
than the latter.ehigher virulence of AFLP6A thanAFLP6B
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was actually shown later in murine model [14]. Finally, AFLP
application to Cryptococcus typing contributed to discover
new interspecies hybrids betweenC. neoformans andC. gattii.
Both AFLP1/AFLP4 (AFLP9) and AFLP3/AFLP4 (AFLP8)
hybrid isolates were identi�ed during some studies carried
out in e Netherlands [122, 139, 140].

MLST is a typing technique based on sequence analysis
of a set of polymorphic loci. e combination of the dif-
ferent allele types of the selected loci determines the MLST
genotype [166]. One hundred and two global C. neoformans
var. grubii isolates were analyzed by MLST in a �rst study
which employed the following set of 12 loci: CAP10, CAP59,
GPD1, LAC1, MPD1, MP88, SOD1, TEF1𝛼𝛼, TOP1, URE1,
and IGS1 [53]. e results showed two major clades among

the studied isolates, corresponding to PCR �ngerprinting
molecular types VNI and VNII and a third new clade, VNB,
including only isolates from Botswana.

A second MLST study investigated 202 global C. gattii
isolates in order to elucidate the origin of Vancouver Island
outbreak isolates [14]. MLST analysis, using seven loci
(CAP10, GPD1, IGS1, LAC1, MPD1, PLB1, and TEF1𝛼𝛼) and
the two mating-type speci�c loci SXI𝛼𝛼 and SXIa, was able
to di�erentiate all the four PCR �ngerprinting molecular
types, VGI-VGIV, as well as both Vancouver Island outbreak
subtypes, VGIIa and VGIIb.

Although others studies have been carried out using
alternative MLST schemes [31, 73, 167], the research com-
munity involved in C. neoformans and C. gattii genotyping
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has reached an agreement to adopt a commonMLST scheme
based on the two main studies reported earlier. During a
meeting in 2007, the ISHAM Cryptococcus working group
members established to adopt MLST as the gold standard
technique for C. neoformans and C. gattii molecular typing
[154]. e standard MLST scheme includes the sequencing
of seven loci, GPD1, IGS1, CAP59, LAC1, SOD1, PLB1, and
URA5, which combined represent the minimum number
of genes giving the maximum discrimination power. In
addition, genotype nomenclature between the three main
typing methods (PC� �ngerprinting, AFLP, and MLST) was
compared and standardized as reported in Table 1, where
reference strains are also indicated.

e standard MLST scheme was applied in some recent
studies contributing to identify new MLST genotypes. e
investigation of 13 Korean C. neoformans var. grubii isolates
led to the identi�cation of a clonal population, designated
genotype VNIc, which was prevalently isolated from non-
AIDS patients [99]. e same �nding seems to be con�rmed
by other authors who analyzed 35 isolates from Japanese
non-HIV patients with cryptococcosis [100]. More recently,
a large MLST study [121], carried out on 183 C. neoformans
var. grubii ai clinical isolates, revealed a low diversity of
this population compared to that found in Africa and the
Americas. e analysis showed also that the MLST data were
consistent with a proposed ancestral African origin of C.
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neoformans var. grubii. MLST pro�les of 1�7 Ugandan C.
neoformans var. grubii clinical isolates were shown to be
associated with the host immunological response providing
a new tool to predict virulence [57]. Finally, four serotype-
C VGIV C. gattii clinical isolates were identi�ed in India,
and their MLST pro�les were found to be strictly correlated
to those from South African VGIV isolates [34]. In order to
include allC. neoformans var. grubii sequences and genotypes
obtained using the standard MLST scheme, a preliminary
MLST database was constructed at the Imperial College of
London (London, UK, http://www.mlst.net/). Unfortunately,

this database has the limit to require a long time for sequence
check before the sequences could be included and assigned
with the right sequence type code. To overcome these limits,
a new MLST database has been established at the Molec-
ular Mycology Research Laboratory (University of Sydney,
Sydney, Australia, http://www.mycologylab.org/).e system
assigns the sequence code automatically when a sequence
is compared with the database and a progressive sequence
code to new sequences. Subsequently, the users are required
to send all the data necessary for quality control as well as
the clinical data to complete the database. At present, the C.
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F 9: Percentage of Cryptococcus neoformans and Cryptococcus gattii isolates from clinical (𝑛𝑛 𝑛 𝑛,590) and environmental (𝑛𝑛 𝑛 𝑛,958)
sources (a). Distribution of Cryptococcus neoformans and Cryptococcus gattii isolates in the different countries of Central and South America
(b). Map of the geographical distribution of the Cryptoccocus neoformans and Cryptococcus gattii isolates in Central and South America
(c). Clinical isolates were reported from red-coloredcountries, whereas both clinical and environmental isolates were reported from orange-
colored countries.

neoformans var. grubii database contains 355 strains with 110
sequence types, and theC. gattii database contains 400 strains
with 160 sequence types [169].

3. Combined Epidemiological Analysis

A total of 68,811 C. neoformans and C. gattii isolates,
reported by hundreds of global research studies, were ana-
lyzed. Data search was performed in PubMed database

(http://www.ncbi.nih.gov/) using the keyword “cryptococ-
cus” combined with a country name, that is, “cryptococcus
italy.” Each reference from the resulting list of references
was selected if it reported data concerning the isolation of
one or more Cryptococcus species complex isolates. Isolates
reported without an identi�cation code or without a citation
were considered new isolates and included in the analysis,
whereas isolates reported from more than one paper were
considered only once. en, all the isolates were analyzed on
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F 10: Percentage of Cryptococcus neoformans and Cryptococcus gattii isolates (𝑛𝑛 𝑛 𝑛𝑛,548) identi�ed at species complex, species,
variety�serotype, ormolecular type level (a). Prevalence of the di�erent VN andVGmolecular types among the isolates identi�ed atmolecular
type level (𝑛𝑛 𝑛 𝑛,345) (b). Geographic distribution of the molecular types identi�ed in Central and �outh America (c). Molecular typing
data have been combined from the following references: Guatemala [64], Honduras [11], Cuba [89–91], Puerto Rico [92], Aruba [11, 17],
Venezuela [64], Colombia [29, 64, 93–96], Perù [64], Uruguay [11, 17], Brazil [11, 17, 29, 38, 46, 64, 97–118], Argentina [15, 64, 119], and
Chile [64].

the basis of their geographical origin, source of isolation, level
of identi�cation, species, and molecular type.

3.1. Oceania. A total of 2,518 Cryptococcus species com-
plex isolates were reported from four countries of Oceania:
Australia, New Zealand, Papua New Guinea, and Hawaii
Islands. Most of the strains were isolated in Australia rep-
resenting 85.4% of the isolates reported. �ixty-�ve percent
of the isolates were from clinical source, whereas 35%

were from environmental and veterinary sources (Figure
1). C. neoformans was isolated from cat, dog, horse, koala,
ferret, Potorous gilbertii [16, 170–173], and from Eucalyptus
camaldulensis and pine needles [11], while C. gattii was
isolated from kiwi, cat, dog, horse, sheep, cow, koala, quokka,
cockatoo, ferret, Potorous tridactylus, echidna, African grey
parrot, and dolphin [17–19, 174, 175], and from Eucalyptus
camaldulensis, Eucalyptus tereticornis, Syncarpia glomulifera,
insect frass, olive seedlings, and plant debris [11, 20, 21, 176].
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Identi�cation at species level was performed for 62% of
the isolates, variety or serotype was identi�ed in 7%, and
molecular type in 22% (𝑛𝑛 𝑛 𝑛𝑛𝑛). Only a small percentage
of the isolates (9%) was identi�ed as Cryptococcus species
complex (Figure 2). A total of 1,328 C. gattii and 900
C. neoformans isolates were reported. Among the isolates
identi�ed at molecular type level, VGI represented the more
frequently isolated molecular type (39%) followed by VNI
(27%) and VGII (22%), the other molecular types were less
frequent. No VGIV isolates have been yet isolated from
Oceania.

Figure 2 shows the molecular type geographical distribu-
tion in the different countries of Oceania. Although C. gattii,
with molecular types VGI, VGII, and VGIII, is prevalent in
Australia and in Papua New Guinea, only two VGIII isolates

were reported from New Zealand where, on the contrary, C.
neoformans (VNI, VNII, and VNIV) is prevalently isolated.

3.2. Asia. e combined analysis including all the Asian
countries showed that a total of 19,651 C. neoformans and
C. gattii isolates were reported. China, India, and ailand,
together, mainly contributed to the study reporting the 80%
of theAsian isolates. Six percent of the isolates were recovered
from the environment or from animals in Turkey, Israel, Iran,
India, Nepal, China, ailand, Malaysia, Taiwan, Republic of
Korea, and Japan (Figure 3). In most of the environmental
surveys, C. gattii was isolated from tree samples, namely,
from Syzygium cumini,Mimusops elengi, Azadirachta indica,
Acacia nilotica, Cassia �stola,Manikara hexandra, Polyalthia
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longifolia, Eucalyptus camaldulensis, Tamarindus indica, Cas-
sia marginata, and Mangifera indica [32, 33, 177], while the
only ten isolates from an animal source were recovered from
koalas living in two different zoos in Japan [178, 179]. On
the contrary, C. neoformans was prevalently isolated from
pigeon and other birds excreta [180] and less frequently from
trees such asEucalyptus tree,Tamarindus arjuna,Tamarindus
indica, Cassia �stola, Syzygium cumini, and Ficus religiosa
[33, 177, 181, 182], as well as from some vegetables and
fruit (tomato, carrot, banana, eggplant, papaya, apple, and
guava) [183, 184]. Among animals, fewC. neoformans isolates
were isolated from cat and dog and one from a bandicoot
[185, 186].

e majority of the Asian isolates (74%) were identi�ed
just at species complex level, 7% at species level and 11% at
variety/serotype level, while the molecular type was deter-
mined only in 8% (𝑛𝑛 𝑛 𝑛,708) (Figure 4). C. neoformans was
the species prevalently isolated in Asia (𝑛𝑛 𝑛 𝑛,192), being C.
gattii about tenfold less frequently (𝑛𝑛 𝑛 𝑛𝑛𝑛) isolated.

Eighty-one percent of the isolates belong to VNI and
13.2% to VGI molecular type. VGII molecular type is also
represented, although in low percentages, in all the Asian
countries included in the analysis, except for Israel and
Taiwan. VNIII and VNIV molecular types are present in
China and in India, as well as one VNIII isolate was reported
from ailand, whereas they are absent in the other Asian
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T 1: Genotype nomenclature adopted by the main molecular typing techniques and correspondence to standard nomenclature.

Species/variety Standard
nomenclature

PCR-�ngerprinting
M13 [15]

PCR-�ngerprinting
(GACA)4 [155]

AFLP
[11]

MLST
[14, 53] Reference strains

C. neoformans
var. grubii

VNI VNI VN6 AFLP1 VNI ATCCMYA-4564 [15]

VNII VNII VN6 AFLP1A or AFLP1B VNII ATCCMYA-4565 [15]

VNB VNI or VNII VN6 AFLP1A or AFLP1B VNB bt1, bt131, bt100 [53]

C. neoformans
var. neoformans VNIV VNIV VN1 AFLP2 — ATCCMYA-4567 [15]

Inter-varietal
AD hybrids VNIII VNIII VN3 or VN4 AFLP3 — ATCC 32045 [168]

C. gattii

VGI VGI — AFLP4 VGI ATCCMYA-4560 [64]
VGII VGII — AFLP6 VGII ATCCMYA-4561 [64]
VGIII VGIII — AFLP5 VGIII ATCCMYA-4562 [64]

VGIV VGIV — AFLP7 VGIV ATCCMYA-4563 [64]

Inter-species
hybrids

VNI/VGI VNI/VGI — AFLP9 — CBS 10496 [122]
VNIV/VGI VNIV/VGI — AFLP8 — CBS 10488 [122]
VNI/VGII VNI/VGII — — — WM 05-272 [29]

ATCC: American Type Culture Collection (http://www.atcc.org/); CBS: Centraalbureau voor Schimmelcultures (http://www.cbs.knaw.nl/); WM: Westmead
Millennium Institute, Sydney, Australia; bt: isolate from Botswana.

countries. Isolates belonging to VGIV molecular type and
one interspecies VN1/VG1 hybrid were reported only in
India [29, 34]. VGIII seems to be very rare or absent in Asia
since only one isolate was detected in Republic of Korea [55]
(Figure 4).

3.3. Africa. Isolation of 19,753 C. neoformans and C. gattii
strains was reported from 25 of the 58 African countries
and mainly from South Africa (79%). Environmental sur-
veys, carried out in eight countries (Tunisia, Egypt, Nige-
ria, Republic Democratic of Congo, Burundi, Zimbabwe,
Botswana, and South Africa), recovered only 1% out the
total reported isolates (Figure 5). C. neoformans was not
only isolated from pigeon and other birds excreta but also
from soil and house dust [60, 187, 188], as well as from
trees such as Eucalyptus camaldulensis, mopane tree, and
baobab [60, 189]. C. gattii was isolated from soil, Eucalyptus
camaldulensis, and almond tree [60, 189]. Two veterinary
isolates were also reported from two cases of cryptococcosis
affecting South African cheetahs [38, 190]. e majority of
the studies reported only the species of the isolates (68%),
19%were reported asCryptococcus species complex, and 11%
as variety or serotype (Figure 6).Molecular typing techniques
were applied to identify 2% of the isolates (𝑛𝑛 𝑛 𝑛𝑛𝑛).
Of these, 68% were molecular type VNI. VNII and VNIII
represent 11% and 1% of the isolates, respectively, and have
been reported only from Uganda and South Africa. irteen
percent of the African isolates belongs to VNB molecular
type, which was initially considered endemic of Botswana
[53] but that is present also in South Africa, Rwanda, and
Republic Democratic of Congo. In addition, a consistent
population of the rare VGIV molecular type was isolated
in Botswana and Malawi [58]. Only one isolate belonging

to VGII and four belonging to VGI molecular type were
reported from Senegal [14] and Republic Democratic of
Congo [11], respectively, whereas VNIV was totally absent
among the African isolates included in the present study
(Figure 6).

3.4. Europe. e map in Figure 7 shows the European
countries reporting the isolation of at least one Cryptococcus
species complex strain. Data were lacking from some Balkan
and Eastern European countries. e majority of the isolates
were reported from France, Spain, Italy, andUnited Kingdom
representing 82% out of the total (𝑛𝑛 𝑛 𝑛,736). Nine
percent of the isolates were detected from environmental
and veterinary sources (Figure 7). C. neoformans not only
isolated from pigeon and other birds excreta, but also from
bat guano and red fox faeces [65, 191, 192]. Veterinary
isolates include strains recovered from cat, dog, magpie, and
some isolates from striped grass mouse and degu living in
a zoo [193–196]. Few C. neoformans strains were isolated
from trees, namely, from Eucalyptus camaldulensis and oak
tree [74, 197]. Most of the C. gattii natural isolates were
from Eucalyptus camaldulensis, Douglas tree, carob tree, and
stone pine [66, 74], whereas C. gattii animal infections were
reported in a ferret and in some goats [65, 67].

Variety or serotype was determined in 34% of the
European isolates, species in 25%, molecular type in 15%,
while the 26% was reported as Cryptococcus species complex
(Figure 8). A total of 6,371 isolates were identi�ed as C.
neoformans and 94 as C. gattii.

European molecular typing data are shown in Figure 8.
e majority of the isolates belong to VNI molecular type
(59%), although VNIII and VNIV molecular types were also
reported in most of the countries representing 18.5% and
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18.3%, respectively. C. gattii molecular types distribution in
Europe is not yet well de�ned. VGI is the prevalent molecular
type, being 43 isolates reported from Portugal, Spain, Italy,
and e Netherlands. Few VGII isolates were reported from
Greece, Switzerland, e Netherlands, and Denmark, and
only one VGIII isolate was found in Greece. A relevant
observation is the absence of typing results from the United
Kingdom, despite the fact that 12% of the European isolates
were reported from this country (Figure 8).

3.5. Central and South America. Among the 10,548 Crypto-
coccus species complex isolates reported from Central and
SouthAmerica, the 53%were reported fromBrazil, 22% from
Colombia, 15% fromArgentina, and a lower percentage from
other countries. A total of 8,590 (81%) strains were isolated
from clinical sources and 1,958 (19%) from environmental
and veterinary sources (Figure 9). Natural C. neoformans
isolates were detected from pigeon and other birds excreta,
soil, dust, and contaminated dwellings [94, 98, 198–200], as
well as from Eucalyptus tree, almond tree, kassod tree, pink
shower tree, Caesalpinia peltophoroides, and Anadenanthera
peregrine [90, 99, 102, 201, 202]. Some isolates were also
recovered from insects, bull, and sheep [99, 203, 204].C. gattii
was isolated from soil, dust, and psittaciformes bird excreta
[94, 103, 199], and from Eucalyptus camaldulensis, almond
tree, kassod tree, pottery tree, jungle tree, Corym�ia �cifolia,
and Cephalocereus royenii [92, 95, 102, 205–208]. Animal
infection due to C. gattii was reported in a cheetah, a goat,
and some psittacine birds [11, 91, 209].

Seventy-seven percent of the isolates were identi�ed at
least at species level (32% as variety or serotype, 23% as
species, and 22% as molecular type), and 23% were reported
as Cryptococcus species complex (Figure 10). C. neoformans
was recognized in 6,665 and C. gattii in 1,464 isolates. e
combined analysis of the molecular typing data reported
from Brazil (1,439 isolates) showed that all the molecular
types, except for VGIV, are represented in this country. e
majority of the isolates in Brazil belong to VNI (𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛)
molecular type followed by VGII (𝑛𝑛 𝑛 𝑛𝑛𝑛), while VNII,
VNIV, VGI, and VGIII occurred in a lower but similar
percentage. Two isolates of VNIII as well as one VNI/VGII
hybrid were also reported. In Colombia (542 isolates), the
prevalence of molecular types was similar to that observed
in Brazil, except for VGIII, which occurred in a higher
percentage than VNII, VGI, and VGIV, as well as VNIV, that
was recognized only in one isolate. VNIII AD hybrids seem
to be absent in Colombia. Data from Argentina (94 isolates)
showed that theVGImolecular type is the prevalent genotype
among C. gattii isolates, in contrast to that observed in Brazil
andColombia, where it is the VGII. In Cuba, 198VNI isolates
were detected, whereas only one isolate was VGI. On the
contrary, in the near Puerto Rico, only C. gattii isolates (16
VGII and one VGIV) were reported. Finally, all the four C.
neoformans molecular types were reported from Chile, but
no C. gattii isolates were found (Figure 10).

3.6. North America. A total of 7,922 C. neoformans and C.
gattii isolates were reported from the USA (79%), Canada

(15%), and Mexico (6%). Eighty percent of the isolates were
from clinical sources, whereas 20% were recovered from
the environment and animals (Figure 11). Pigeon droppings
were the main source for C. neoformans isolation [210, 211],
although, in Mexico, it was also isolated from fruit and
vegetables [212].reeC. neoformans isolates (two inCanada
and one in the United States) caused infection in ferrets
[170, 213]. Isolation of C. gattii from the environment and
from animals was widely reported from Canada during the
monitoring of the Vancouver Island C. gattii outbreak. Soil,
trees, and animals living in Vancouver Island (dogs, cats,
horses, ferrets, and birds) resulted colonized or infected with
this pathogen [121]. Outside Canada, VGIIa isolates were
found in the environment and animals (air, water, soil, tree,
cats, dogs, alpacas, and parrots) in Oregon and Washington
State [123, 124], and one VGI strain was isolated from
Eucalyptus camaldulensis in Mexico [214].

Almost half of the isolates (49%) reported from North
America were identi�ed only as Cryptococcus species com-
plex, 10% were identi�ed at species level, while variety or
serotype was reported for 21%. Molecular type was deter-
mined in 20% of the isolates (𝑛𝑛 𝑛 𝑛,707) (Figure 12). Despite
the fact that C. neoformans was more frequently isolated in
North America thanC. gattii (3,148 versus 885 isolates, resp.),
39% of the isolates identi�ed by molecular techniques belong
to VGIIa molecular type. is is due to the extensive effort
produced to discover the cause of Vancouver Island outbreak
which, at present, includes 473 VGIIa, 57 VGIIb, and 70 VGI
isolates [121]. In addition, a recent study has reported the
infection of a Canadian patient with an interspecies VNI/VGI
AB hybrid strain [122]. VNI was the prevalent molecular
type in both the United States and Mexico, where VNII,
VNIII, VNIV, and VGI are also present in lower percentages.
VGII and VGIIa C. gattiimolecular types were reported from
the Northwest Paci�c Coast of United States, while VGIII
was reported more frequently from Mexico and Southern
California [64, 120, 125]. Five VGIV isolates were reported
fromMexico [64, 120], although this molecular type is absent
in Canada and in the United States.

4. Concluding Remarks

e present combined analysis shows that about 68,811 C.
neoformans/C. gattii isolates were reported in the world till
now. e majority of the isolates were reported from Asia
and Africa (19,651 and 19,647 isolates, resp.), followed by
Central and SouthAmerica (𝑛𝑛 𝑛 𝑛𝑛,548), Europe (𝑛𝑛 𝑛 𝑛,736),
North America (𝑛𝑛 𝑛 𝑛,922), and Oceania (𝑛𝑛 𝑛 𝑛,518).
e countries where the isolates were prevalently isolated
are South Africa (𝑛𝑛 𝑛 𝑛𝑛,361), China (𝑛𝑛 𝑛 𝑛,736), USA
(𝑛𝑛 𝑛 𝑛,198), and Brazil (𝑛𝑛 𝑛 𝑛,709). On the contrary, data
are completely lacking from many countries of Africa, Asia,
and Eastern Europe. United States is the country where the
environment was more extensively surveyed (1089 isolates),
followed by Brazil (𝑛𝑛 𝑛 𝑛𝑛𝑛), Australia (𝑛𝑛 𝑛 𝑛𝑛𝑛),
Colombia (𝑛𝑛 𝑛 𝑛𝑛𝑛), and India (𝑛𝑛 𝑛 𝑛𝑛𝑛). Although 723
environmental isolates were also reported from Canada, they
are not representative of the whole country since they were
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recovered during themonitoring of a restricted territory such
asVancouver Island area. In 38.5% of the isolates (𝑛𝑛 𝑛 𝑛𝑛,473)
reported in the literature, the species was not determined,
whereas among the isolates identi�ed at least at species level
(61.5%, 𝑛𝑛 𝑛 𝑛𝑛,338), C. neoformanswas about eightfold more
frequently isolated than C. gattii (88.6% versus 11.4%). e
C. neoformans/C. gattii ratio is variable for each continent
being 68 : 1 in Europe, 33 : 1 in Africa, 7.6 : 1 in Asia, 4.5 : 1
in Central and South America, 3.5 : 1 in North America, and
1 : 1.5 in Oceania, where C. gattii is the prevalent species
isolated.

Molecular type was determined for 8,077 isolates (12%)
representing only a part of the world countries. Molecular
data are absent from large parts of Africa, Asia, Eastern
Europe, as well as from United Kingdom, Ireland, Norway,
and Finland. VNI is the prevalent molecular type worldwide
except in Australia and Papua New Guinea, where it is VGI.
is latter molecular type was also found in 13.2% of the
Asian, in 7% of the North American, in 4% of the Central
and South American, and in 3.4% of the European isolates,
while only four VGI strains have been reported from Africa.
VNII is a rare molecular type which is reported from all
the continents, except from Europe, in low percentages.
However, a recent MLST study carried out in Italy has
showed the presence of one VNB and three VNII strains
also among a group of Italian clinical isolates, suggesting
that these populations are underestimated in the European
continent [215]. In addition, two VNB isolates from Brazil
and Colombia, previously reported as VNII, were recognized
by MLST analysis, con�rming that VNB molecular type is
not endemic of Southern Africa [22]. e distribution and
prevalence of the VGII molecular type is relevant to elucidate
the origin of the Vancouver Island and Northwest Paci�c
Coast C. gattii outbreak. e present analysis has identi�ed
four main reservoirs of VGII molecular type: Brazil (266
isolates), Colombia (𝑛𝑛 𝑛 𝑛𝑛𝑛), Australia (𝑛𝑛 𝑛 𝑛𝑛𝑛), and
Puerto Rico (𝑛𝑛 𝑛 𝑛𝑛). ese data con�rm the hypotheses
suggested by other authors that theVancouver outbreak could
be originated from Australia [14] or from South America
[22].e VGIII molecular type has been prevalently detected
in Latin American countries, including Mexico and Sothern
California (134 isolates). In the other continents, VGIII is
very rare, counting one isolate in Republic of Korea, one
in Greece, and six in Oceania. e abundance of VNIII
AD hybrids seems to be strictly related to the presence of
VNIV molecular type. In Europe and in the USA, where
the frequency of isolation of VNIV strains is higher than
in other geographical areas (18% and 6%, resp.), a similar
percentage of VNIII isolates has been observed, suggesting
that in these regions hybridization between VNI and VNIV
populations is occurring. VGIVmolecular type was reported
from Southern Africa (𝑛𝑛 𝑛 𝑛𝑛), India (𝑛𝑛 𝑛 𝑛), Colombia
(𝑛𝑛 𝑛 𝑛𝑛), and Mexico (𝑛𝑛 𝑛 𝑛), but a recent MLST
study, comparing these isolates, has revealed that Indian and
Southern African isolates are strictly correlated and different
from those from South America [34]. Finally, the interspecies
C. neoformans/C. gattii hybrids have been rarely reported
from different geographical areas, namely, one from India,
one from Colombia, one from Brazil, one from Canada, and

three from e Netherlands. However, due to the difficulty
to identify these hybrids, it is likely that their prevalence is
underestimated.

In conclusion, the present study describes the state of
the art of C. neoformans and C. gattii genotyping by a
detailed representation of the geographical distribution of
the major molecular types, which could be a useful tool to
start new epidemiological surveys on the basis of the present
knowledge.
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